

Calibration Protocol DMC II 250 – 030

Camera Calibration Certificate No: DMC II 250 – 030

For

Aero Photo Europe Investigation

Aerodrome de Moulins Montbeugny Yzeure Cedex 03401

France

Protocol

Camera:	DMC II 250
Manufacturer:	Z/I Imaging GmbH, D-73431 Aalen, Germany
Reference:	PAN
Serial Number:	00120554 (PAN Head)
Date of Calibration:	22. July 2011
Date of Report:	09. October 2012
Number of Pages:	

Calibration performed at: Carl Zeiss Jena, Carl-Zeiss-Promenade 10, 07745 Jena, Germany.

This camera system is certified by Z/I Imaging and is fully functional within its specifications and tolerances.

Date of Calibration: July 2011

Date of Certification: October 2012

Jinga Cepel

Chr. THE

Jürgen Hefele, Senior Software Developer

Dipl.Ing. Christian Müller, Technical Consultant

Camera Serial Numbers and Burn-In flight

Camera Head	Serial	Calib. Date
	Number	
PAN	00120554	22.07.2011
(reference)		
MS1 (NIR)	00121916	22.08.2012
MS2 (Blue)	00122326	19.09.2012
MS3 (Red)	00121921	04.10.2012
MS4 (Green)	00122323	20.09.2012

Burn-In flight performed: 08. October 2012

Test block configuration

		Photo Scale	1:8928.6
T I		Flying Height [m]	1000 AGL
1		Flying Altitude	1450 AMSL
	9	[m]	
	4	Run-Spacing [m]	419.2
		Base-Length [m]	210.2
•	Ro-cost Ro-cost Ro-cost Ro-cost Ro-cost	Number of	52
		Exposures	
1		Side-lap [%]	50
	10-000	End-lap [%]	70
		Terrain Height	450
	Re-too to-too To-too To-too To-too To-too To-too	[m]	
	9		_
		Number of strips	6
	to an a second se	Photos in one	2 x 8 N-S
	Second Second Second Second Second Second Second Second	strip	4 x 9 W-E
	Ro-corr	Photos Used	52
	•	Control Points	5
		Used Objects	0.1
	Ro-ons		34
	Ro-core Ro-core Ro-core Ro-core Ro-core Ro-core Ro-core		5
	Ro-cors	Gon [ciii]	Э

Aerial triangulation statistic results:

Parameter	X/Omega	a Y/Phi	Z/Kappa	⊢Key Sta	atistics Sigma: 1.6 um
RMS Control RMS Check RMS Limits Max Ground Residual Residual Limits Mean Std Dev Object RMS Photo Position RMS Photo Attitude Mean Std Dev Photo Position Mean Std Dev Photo Attitude	0.007 0.013 0.050 0.009 0.050	0.009 0.022 0.050 0.015 0.050	0.014 0.028 0.050 0.019 0.050	G	RMS Image (x, y): 1.4, 1.2 um Number of iterations: 2 Degrees of Freedom: 14515 Gross Image Blunders: 0 Gross Control Blunders: 0 Image Blunders: 0
•			•		
Current Count Control Points Used: 5 Check Points Used: 3 Photos Used: 5 Photos Not Used: 0 Image Points Used: 1	5 34 52) 0811	Cameras used: (Camera Id DMC_II_250	(1). Lens Di Off	Grids Off	Project Settings Linear: Meters Refraction: Off Angular: Degrees Curvature: Off Deutsche Hauptdreiecksnetz - Gauss-Kruger (3-degree) (m)

The results of the aerial triangulation were generated with ImageStation Automatic Triangulation (ISAT), Version 6.2, from Intergraph Z/I Imaging. The maximum RMS in check points is ≤ 0.5 GSD in x,y and ≤ 0.7 GSD in z.

Aerial Triangulation performed by

Dipl. Ing. C. Müller

09.10.2012 Date

Geometric Calibration

The output image geometry is based on the Pan Camera head (reference head = master camera). All other camera heads are registered and aligned to this head. Aerial triangulation checks overall system performance based on.

Output image

Reference Camera	PAN	
Serial Number	00120554	
Number of rows/columns [pixels]	16768 x 14016	
Pixel Size [µm]	5.600 x 5.600	
Image Size [mm]	93.9008 x 78.4896	
Focal Length [mm]	112.0099 mm	+ /- 0.002 mm
Principal Point [mm]	X= -0.0020 mm	+ /- 0.002 mm
	Y= -0.0100 mm	

The geometric calibration takes place at Carl Zeiss Jena on a certified test stand. More than 800 "light targets", projected on 28 lines that are distributed diagonally on the focal plane, are automatically measured by finding their centers light with a precision of less than 1/10 of a pixel. The light targets are projected from the "infinity" by using a collimator (Figure 1).

Geometric Calibration

Image Residuals

Figure 2 shows the image residuals, split in radial and tangential directions after the calibration adjustment. The maximum residuals are less than or equal to 1.5 microns and the RMSE values are below 0.5 microns.

Figure 2: Tangential/Radial Distortion Residuals

Figure 3 shows the 2-D plot of the image residuals in mm.

Figure 3: 2-D Image Residuals. RMS < 0.11 um (maximum 0.44 microns)

Optical System

Modulation Transfer Function, MTF of PAN Camera (Reference)

The MTF measurement is camera type specific and shows variation of the MTF within the specified temperature range.

This is a camera type specific measurement.

Sensitivity of PAN camera (Reference)

The sensitivity shows the spectral response curve of the single camera head including the optical system (optics, filter) and the sensor response. The DMC II 250 is calibrated with respect to the absolute spectrometer. This allows computing pixel radiance values from pixels digital numbers and is a camera type specific calibration.

This is a camera type specific measurement.

Sensor Linearity (Reference)

The sensor linearity is measured in the Lab with calibrated spectrometer. This is a camera type specific calibration.

Below figure shows the linearity of the raw sensor and after flat fielding:

The deviation from the linearity is below 1%.

This is a camera type specific measurement.

Sensor Noise (Reference)

Sensor noise shows image noise with respect to the image center measured at an aperture of 16 with exposure time of 16msec.

This is from a camera type specific calibration.

Aperture Correction (Reference)

Camera PAN (00120554)

The light fall off to the border due the influence of the optics depends on the aperture used. Therefore this calibration approach delivers individual calibration images for each aperture (Full F-Stop). In general the light fall off is a function of the image height (radial distance from center). The figure below shows the profile from the upper left corner to the lower right corner of the calibration images. Compensation of the light fall off can be measured after normalization and is within $\pm 2.5\%$ of the dynamic range.

This is from a camera type specific calibration.

Defect Pixel

Camera PAN (00120554)

Defect pixels are detected during radiometric calibration and will be corrected during radiometric processing of the images. The quantity and cumulative percentage and specification of defects is described in Appendix "Defect Pixel Recognition".

Revision of calibration: CCDRevision: Date Number: Date:		65537 1	1348652987 120926
Number of defect Number of defect Number of defect	pixels: clusters: columns:	128 0 0	
Nr Row	Column		
0 10805 1 10806 2 10807 3 10805 4 10806 5 7499 6 7499 7 7501 8 7500 9 7501 10 13220 11 8091 12 8092 13 8091 14 8092 15 6022 16 12716 17 12717 18 12713 19 12714 20 14089 21 14087 22 14088 23 14087 24 14088 25 14087 26 14083 27 14085 28 14081 30 14078 31 14080 32 14081 33 14082 <	$egin{array}{c} 6\\ 6\\ 7\\ 7\\ 16\\ 17\\ 17\\ 18\\ 18\\ 441\\ 1240\\ 1241\\ 1241\\ 2336\\ 2881\\ 2882\\ 2882\\ 3515\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3516\\ 3520\\ 3521\\ 3522\\ 3715\\ 3716\\ 3716\\ 3716\\ 3716\\ 3717\\ 3717\\ 4282\\ 4283\\ 3516\\ 3717\\ 3717\\ 3726\\ 3716\\ 3716\\ 3717\\ 3717\\ 3726\\ 3717\\ 3717\\ 3726\\ 3717\\ 3717\\ 3726\\ 3716\\ 3716\\ 3716\\ 3717\\ 3717\\ 3726\\ 3717\\ 3717\\ 3726\\ 3716\\ 3716\\ 3716\\ 3716\\ 3716\\ 3716\\ 3717\\ 3726\\ 3716\\ 3716\\ 3716\\ 3716\\ 3717\\ 3726\\ 3716\\ 3716\\ 3716\\ 3716\\ 3717\\ 3726\\ 3716\\ 3716\\ 3717\\ 3726\\ 3717\\ 3726\\ 3716\\ 3716\\ 3716\\ 3717\\ 3726\\ 3717\\ 3726\\ 3716\\ 3716\\ 3716\\ 3717\\ 3726\\ 3716\\ 3717\\ 3726\\ 3716\\ 3716\\ 3717\\ 3726\\ 3717\\ 3726\\ 3716\\$		

Protocol

45	11165	4283	
46 47	11166 3116	4283 4315	
48	5195	6294	
49	5195	6295	
50	1074	6874	
51	1398	7555	
52	11786	8223	
54	4005	8609	
55	4005	8610	
56	4006	8610	
57	6044	9176	
50	6045 6044	9176 0177	
60	6045	9177	
61	1377	11438	
62	1377	11439	
63	1376	11441	
65	13164	13436	
66	5844	13574	
67	5845	13574	
68	5844	13575	
69 70	5845 5846	13575	
71	5844	13576	
72	5845	13576	
73	5846	13576	
74	5847	13576	
75	0044 5845	13577	
77	5846	13577	
78	5847	13577	
79	5845	13578	
80 91	5846 5847	13578	
82	283	13663	
83	14524	14056	
84	14525	14056	
85	14524	14057	
87	14525	14057	
88	14525	14058	
89	14526	14058	
90	14527	14058	
91	14524	14059	
93	14526	14059	
94	14527	14059	
95	14528	14059	
96 97	14525 14526	14060 14060	
98	14527	14060	
99	2644	14387	
100	2645	14387	
101	2643	14388 14388	
102	2645	14388	
104	142	14444	
105	141	14445	
106	142	14445	
107	143 141	14445 14446	
109	142	14446	
110	143	14446	
111	3078	15482	
112	3079	15482	
113	3078 3079	15483	
115	5168	15695	
116	5169	15695	
117	13015	16499	
118	13014	16500	
120	2732	16622	
121	2731	16623	

DMC II 250 Calibration

122	2729	16624	
123	2730	16624	
124	2728	16625	
125	2727	16626	
126	3137	17051	
127	305	17214	
Defect	Column R	wStart ColumnStart RowEnd ColumnEnd	

Optical System

Modulation Transfer Function, MTF of Green camera

RMK D / RMK DX / DMC II MS Green - MTF F/4.0 ; 45 mm- Temperature Stability

Sensitivity of Green camera

Spectral response curve of the single camera head.

The sensitivity shows the spectral response curve of the single camera head including the optical system (optics, filter) and the sensor response. The DMC II 250 is calibrated with respect to the absolute spectrometer. This allows computing pixel radiance values from pixels digital numbers and is a camera type specific calibration.

Sensor Linearity (Reference)

The sensor linearity is measured in the Lab with calibrated spectrometer. This is a camera type specific calibration.

Below figure shows the linearity of the raw sensor and after flat fielding:

The deviation from the linearity is below 1%.

Sensor Noise (Reference)

Sensor noise shows image noise with respect to the image center measured at an aperture of 8 with exposure time of 22msec. Sensor noise after calibration shall be less or equal 0.5% of radiometric resolution. At 14bit radiometric resolution 0.5% (of 16384) is equal to 82 gray values. This is a camera type specific calibration.

Aperture Correction

Green (00122323)

The light fall off to the border due the influence of the optics depends on the aperture used. Therefore this calibration approach delivers individual calibration images for each aperture (Full F-Stop). In general the light fall off is a function of the image height (radial distance from center). The figure below shows the profile from the upper left corner to the lower right corner of the calibration images.

This is a camera type specific calibration.

Defect Pixel

Green (00122323)

Defect pixels are detected during radiometric calibration and will be corrected during radiometric processing of the images. The quantity and cumulative percentage and specification of defects is described in Appendix "Defect Pixel Recognition".

Revision of calibration: CCDRevision: Date Number: Date:	65537 1	1348649834 120926
Number of defect pixels: Number of defect clusters: Number of defect columns:	0 0 0	
Nr Row Column	I	
Defect Column RowStart Co	olumnStart	RowEnd ColumnEnd

Protocol

Optical System

Modulation Transfer Function, MTF of Red camera

RMK D / RMK DX / DMC II MS Red - MTF F/4.0 ; 45 mm- Temperature Stability

Sensitivity of Red camera

Spectral Response Curves of the single camera head.

The sensitivity shows the spectral response curve of the single camera head including the optical system (optics, filter) and the sensor response. The DMC II 250 is calibrated with respect to the absolute spectrometer. This allows computing pixel radiance values from pixels digital numbers and is a camera type specific calibration.

Sensor Linearity (Reference)

The sensor linearity is measured in the Lab with calibrated spectrometer. This is a camera type specific calibration.

Below figure shows the linearity of the raw sensor and after flat fielding:

The deviation from the linearity is below 1%.

Sensor Noise (Reference)

Sensor noise shows image noise with respect to the image center measured at an aperture of 8 with exposure time of 22msec. Sensor noise after calibration shall be less or equal 0.5% of radiometric resolution. At 14bit radiometric resolution 0.5% (of 16384) is equal to 82 gray values. This is a camera type specific calibration.

Aperture Correction

Red (00121921)

The light fall off to the border due the influence of the optics depends on the used aperture. Therefore this calibration approach has for each aperture (Full F-Stop) its own calibration image. In general the light fall off is a function of the image radius. In this calibration approach instead of function the real measured values in the image is used. The figure below shows the profile from the upper left corner to the lower right corner of each of this calibration images to give a feeling on the amount of correction.

This is a camera type specific calibration.

Defect Pixel

Red (00121921)

Defect pixels are detected during radiometric calibration and will be corrected during radiometric processing of the images. The quantity and cumulative percentage and specification of defects is described in Appendix "Defect Pixel Recognition".

Revision of calibration: CCDRevision: Date Number: Date:			65537 1	1349692713 121008
Number of defect pixels: Number of defect clusters: Number of defect columns:		2 0 0		
Nr	Row	Column		
0 1 Defect C	6182 1667 Column Ro	2002 2035 owStart Col	umnStart	RowEnd ColumnEnd

Protocol

Optical System

Modulation Transfer Function, MTF of Blue camera

RMK D / RMK DX / DMC II MS Blue – MTF F/4.0 ; 45 mm– Temperature Stability

Sensitivity of Blue camera

Spectral Response Curves of the single camera head.

The sensitivity shows the spectral response curve of the single camera head including the optical system (optics, filter) and the sensor response. The DMC II 250 is calibrated with respect to the absolute spectrometer. This allows computing pixel radiance values from pixels digital numbers and is a camera type specific calibration.

Sensor Linearity (Reference)

The sensor linearity is measured in the Lab with calibrated spectrometer. This is a camera type specific calibration.

Below figure shows the linearity of the raw sensor and after flat fielding:

The deviation from the linearity is below 1%.

Sensor Noise (Reference)

Sensor noise shows image noise with respect to the image center measured at an aperture of 8 with exposure time of 22msec. Sensor noise after calibration shall be less or equal 0.5% of radiometric resolution. At 14bit radiometric resolution 0.5% (of 16384) is equal to 82 gray values. This is a camera type specific calibration.

Aperture Correction

Blue (00122326)

The light fall off to the border due the influence of the optics depends on the used aperture. Therefore this calibration approach has for each aperture (Full F-Stop) its own calibration image. In general the light fall off is a function of the image radius. In this calibration approach instead of function the real measured values in the image is used. The figure below shows the profile from the upper left corner to the lower right corner of each of this calibration images to give a feeling on the amount of correction.

This is a camera type specific calibration.

Defect Pixel

Blue (00122326)

Defect pixels are detected during radiometric calibration and will be corrected during radiometric processing of the images. The quantity and cumulative percentage and specification of defects is described in Appendix "Defect Pixel Recognition".

Revision of calibration: CCDRevision: Date Number: Date:			65537 1	1348650892 120926
Number of defect pixels: Number of defect clusters: Number of defect columns:		4 0 0		
Nr	Row	Column		
0 1 2 3	2119 5059 5777 315	91 2710 3388 6082	lumnStart	
			unnolari	

Protocol

Optical System

Modulation Transfer Function, MTF of IR camera

RMK D / RMK DX / DMC II MS IR - MTF F/4.0 ; 45 mm- Temperature Stability

Sensitivity of NIR camera

Spectral Response Curves of the single camera head.

The sensitivity shows the spectral response curve of the single camera head including the optical system (optics, filter) and the sensor response. The DMC II 250 is calibrated with respect to the absolute spectrometer. This allows computing pixel radiance values from pixels digital numbers and is a camera type specific calibration.

Sensor Linearity (Reference)

The sensor linearity is measured in the Lab with calibrated spectrometer. This is a camera type specific calibration.

Below figure shows the linearity of the raw sensor and after flat fielding:

The deviation from the linearity is below 1%.

Sensor Noise (Reference)

Sensor noise shows image noise with respect to the image center measured at an aperture of 8 with exposure time of 22msec. Sensor noise after calibration shall be less or equal 0.5% of radiometric resolution. At 14bit radiometric resolution 0.5% (of 16384) is equal to 82 gray values. This is a camera type specific calibration.

Aperture Correction

NIR (00121916)

The light fall off to the border due the influence of the optics depends on the used aperture. Therefore this calibration approach has for each aperture (Full F-Stop) its own calibration image. In general the light fall off is a function of the image radius. In this calibration approach instead of function the real measured values in the image is used. The figure below shows the profile from the upper left corner to the lower right corner of each of this calibration images to give a feeling on the amount of correction.

This is a camera type specific calibration.

Defect Pixel

NIR (00121916)

Defect pixels are detected during radiometric calibration and will be corrected during radiometric processing of the images. The quantity and cumulative percentage and specification of defects is described in Appendix "Defect Pixel Recognition".

Revision of calibra CCDRevision: Date Number: Date:	ation:	65537 1	1348649299 120926
Number of defect pixels: Number of defect clusters: Number of defect columns:		5 0 0	
Nr Row	Column		
0 591 1 869 2 6075 3 6075 4 6076 Defect Column Ro	200 3727 5868 5869 5869 5869 owStart Co	lumnStart	RowEnd ColumnEnd

Sensor Geometric Accuracy

Large area CCD imagers are composed (stitched) from several blocks. Stitching on wafer with semiconductor lithographic equipment results in geometric accuracy better than $0.1\mu m$ (Stoldt, H. (2010).

Therefore the geometric accuracy of individual pixels within a block can be assumed as better or equal the stitching accuracy.

Defect Pixel Recognition The table below shows the maximal allowed physical defects on the CCD Sensor and its definitions.

	Description	CCD Spec
Pixel	Bright image	Pixel whose signal, at nominal light (illumination at 50% of the linear range), deviates more than $\pm 30\%$ from its neighboring pixels.
	Dark image	Pixel whose signal, in dark, deviates more than 6mV from its neighboring pixels (about 1% of nominal light).
	Max Count	PAN ≤ 3500 MS <500

	Description	CCD Spec
Column	Definition	A column which has more than 8 pixel defects in 1 1x 12 kernel Column defects must be horizontally separated by 5 columns for single line defects and 10 for double line defects
	Recognition (bright and dark)	Same as defect pixel recognition
	Max Single column	PAN ≤ 140
		MS ≤ 20
	Max double Column	PAN ≤ 40 MS ≤ 6

The Post-Processing-Software is correcting following pixel and columns:

	PPS Correction
Pixel	Pixel whose gray value in a 16 x16 kernel differs from the median more than 30%

PPS Correction

Pixel whose gray value in a 16 x16 kernel differs from the median more than 5% and more than 15 defects in one column

Column

Bibliography

Brown D. C. Close-Range Camera Calibration, Photogrammetric Engineering 37(8) 1971

Dörstel C., Jacobsen K., Stallmann D. (2003): DMC – Photogrammetric accuracy – Calibration aspects and Generation of synthetic DMC images, Eds. M. Baltsavias / A.Grün, Optical 3D Sensor Workshop, Zürich

Fraser C., Digital Camera sel-f calibration. ISPRS Journal of Photogrammetry and Remote Sensing, (997, 5284): 149-159

Zeitler W., Dörstel C., Jacobsen K. (2002): Geometric calibration of the DMC: Method and Results, Proceedings ASPRS, Denver, USA.

Ryan R., Pagnutti M. (2009): Enhanced Absolute and Relative Radiometric Calibration for Digital Aerial Cameras, in: Fritsch D. (Ed.), Photogrammetric Week 2009, Wichmann-Verlag, pp. 81-90.

Doering D., Hildebrand J., Diete N. (2009): Advantages of customized optical design for aerial survey cameras, in: Fritsch D. (Ed.), Photogrammetric Week 2009, Wichmann-Verlag, pp. 69-80.

Stoldt, H. (2010): DALSA Ultra large CCD technology Customized for Aerial Photogrammetry. At: ASPRS 2010, San Diego, USA, p. 15.